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The nonlinear dynamics of nonlinear modulated cross-waves of resonant frequency 
01 and carrier frequency w = 01 is investigated. In a long channel of width b, that 
contains fluid of depth d and which is subjected to a vertical oscillation of frequency 
2w, the wave can appear in solitary form. As has been shown previously, the solitary 
wave is only stable in a certain parameter regime; depending on damping and driving 
amplitudes the wave becomes unstable. The nonlinear development of the instabilities 
of solitary waves is the central problem of this paper. It is shown how instabilities are 
saturated following generic routes to chaos in time with spatially coherent structures. 
Finally, the case of time-modulated driving amplitudes is also considered. In most 
cases it appears that nonlinear waves of simple spatial structures take part in the 
nonlinear dynamics, but a few cases of spatial chaos are also reported. 

1. Introduction 
The experimental observation of a non-propagating hydrodynamic soliton by Wu, 

Keolian & Rudnick (1984) opened the wide field of the existence and dynamics of 
resonantly excited solitary water waves. The basic theory of this phenomenon was 
developed by Miles (1984 a, b) and Larraza & Putterman (1984). Meanwhile we have 
beautiful experiments (e.g. Funakoshi & Inoue 1987, 1990, 1992; Ezerskii et al. 1986; 
Ciliberto & Gollub 1985; Simonelli & Gollub 1989; Denardo et al. 1990; Guthart & 
Wu 1991; Wei et al. 1990; Chen & Wei 1994) and numerical simulations (e.g. Umeki 
1991a, b;  Kambe & Umeki 1990) which show that this area is rapidly growing and 
extremely interesting. Nonlinear surface waves can act as a paradigm for classical 
nonlinear dynamics in systems with an infinite number of degrees of freedom. 

In a series of experiments Funakoshi & Inoue (1987, 1990, 1992, and references 
therein) found existence regions for resonantly excited nonlinear waves using cylin- 
drical geometry. They also investigated the instabilities and possible routes to chaos, 
thereby clarifying by clear experiments several theoretical predictions. Ezerskii et al. 
(1986) did experiments on parametric excitation of a capillary ripple on a silicone 
surface, observing in space two-dimensionally chaotic states. Ciliberto & Gollub 
(1985) as well as Simonelli & Gollub (1989) studied mode coupling in Faraday reso- 
nance. Wei et al. (1990) and Chen & Wei (1994) made detailed experimental studies 
of non-propagating solitons and their transition to chaos as well as an investigation 
on the effects of periodically modulated drivers. We also refer the reader to recent 
overviews which can be found in Guthart & Wu (1991) and Miles & Henderson 
(1990). 
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The theoretical description of a nonlinear modulated cross-wave starts from the 

(1.1) 

for the complex amplitude r of the dominant cross-wave. Here, a is the linear 
damping (a  > 0), and the terms p r  and yr' (with y > 0, but p can have both signs) 
appear because of vertical oscillations z = a0 cos(2ot) at approximately twice the 
carrier frequency o = 01 = (gktanhkd)1/2. The other parameters, B > 0 and A 
(for the modulationally unstable case A > 0; in general, A can have both signs, but 
here we consider only the modulationally unstable situation which results in soliton 
formation) can be scaled out, so that with 

model equation (Miles 1984 b) 

i(r, + ar)  + ~ r ,  + ( p  + Alr12) r + yr' = o 

I := -p - ia 

6 := y -+ 6(t) = 6 (1 + a, sinnt) , 

ivt + ~ x x  + Iv12y - I r v  - iIiY + 6(t)v* = 0 .  

(1.2) 

(1.3) 

(1.4) 

and 

we can write (1.1) in the standard form 

By allowing 6(t) to be a function of time t (la,[ < 1) we are able to include a slow 
modulation of the oscillation amplitude (Chen & Wei 1994). But first, by putting 
a, = 0, we restrict ourselves to the original Miles model. Note that recently (1.1) was 
generalized for solutions without compact support (Sasaki 1993 ; Miles 1994). 

In 1991 several papers appeared which discussed the stability of stationary solutions. 
Two investigations (Laedke & Spatschek 1991 ; Barashenkov, Bogdan & Korobov 
1991) concentrated on the (localized) solitary wave solution 

G = (2(& - 6 cos 29))'12 sech (Ar - 6 cos 29)'12 (x - XO)] [ (1.5) 

where the phase 9 in y = Ge'v is determined by the algebraic relation 

Ii + 6 sin29 = 0 . (1.6) 

6 > -ili (1.7) 

The relation (1.6) suggests an existence condition of the form 

for non-trivial solutions. Note that then (1.6) has two solutions which we denote by 
the index +. 

Solutions (on a finite domain) with periodicity length L were also investigated 
(but preferentially numerically). Besides vanishing boundary conditions at infinity, 
boundary conditions at finite distance are of especial interest, because of direct 
applicability to the experiments. The theoretical understanding of the rich dynamics 
inherent in the Miles equation was much advanced by Umeki (1991 a, b)  and Kambe 
& Umeki (1990). By numerical simulations in finite systems with periodic boundary 
conditions they obtained noidal wave solutions and, in the time-dependent case they 
found periodic, quasi-periodic, and chaotic motions where - in most cases - the 
spatially coherent noidal waves played the dominant role. 

In this paper we shall mainly concentrate on the solitary wave solution since we 
believe that - compared with the progress obtained by Umeki and Kambe for the 
finite-dimensional case - some work is still necessary to understand the basic dy- 
namics of the solitary wave solutions. The solitary wave case has - compared with 
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the noidal wave case - the advantage that some analytical results can be obtained 
in simpler form. It turns out that the principal features are similar to those on the 
infinite domain. As we shall show below, the c-noidal and d-noidal waves exist as 
counterparts of the soliton solution (1.5). 

Since we have a quite clear picture of the existence and instabilities of nonlinear 
solitary solutions, the problem of predicting and understanding the nonlinear devel- 
opments becomes of major interest. This paper is devoted to this new aspect; it 
is organized as follows. First, in 0 2, we present an overview of the existence and 
stability properties. Phenomenologically known results are supported by analytical 
arguments. Then, in 0 3 we discuss the various scenarios of nonlinear developments, 
depending on the paths in parameter space. We shall pick out one route (see 0 3.1) 
in more detail in order to support the numerical findings by analytic theory. In 0 4 
we briefly report on some phenomena for modulated driving amplitudes. The paper 
is concluded by a short summary and outlook. 

2. Existence and stability results 
2.1. Existence of non-trivial solutions 

Let us consider a system of length L with x1 d x d x2 and x2 - x1 = L. (Later we 
can also go to L + co.) Defining 

and 

N: = l: laxy12dx (2.2) 

one can prove 

and 

where C is a constant. Thus, when 6 < -Ai we find No --f 0 for t + co. 

lv(x)I2 d 2NoN1 + L-'N; (2-3) 

(2.4) N: < Ce2("+6)' 

To prove (2.3) and (2.4) we start with the identity 

where 5,x E [x1,x2]. Using j(axy))y*I d laxy)IIy)1 and Ix - 51 d 1x2 -X I ]  we obtain by 
the Cauchy-Schwarz inequality and the mean value theorem of analysis 

ly)(x)l2 d 2 (l: laxy)12dx)1'2 (l: ly)12dx)1'2 + l: Iy)I2dx. (2.6) 

This is identical with (2.3). 

for y .  A short calculation leads to 
For (2.4) we differentiate N; with respect to t and make use of the dynamic equation 

dN; 
~ = 2AiN: + i6 1:' ( Y ' ~  - y)')  dx . 
dt 

Periodic boundary conditions have been used. Note that in our calculation 6 can even 
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FIGURE 1. Starting with a solitary wave solution for ,Ir = l , l i  = -0.5,6 = 0.4, the solution 
is being damped out with increasing time. 

be periodically modulated, e.g. we choose the modulation a, sin a t  as shown by (1.3) 
in this presentation. Using the triangle inequality ( y  := a + ib, i (y” - y2)=4ab < 
2 (a2 + b2)=2y*y) we can transform (2.7) into 

From here (2.4) follows immediately. 
However to conclude from (2.3) and (2.4) that under this condition only the trivial 

solution exists, we have to analyse the dynamics of N1. One can show that N1 obeys 

( N *  - N ; ) 2  < E,  + N; + L-”; - n& + 6 N i ,  (2.9) 

which proves that N1 is bounded for No + 0 ; E,  is a constant. Thus from (2.3) we 
can conclude that y + 0 for 6 < -Ai. Figure 1 demonstrates such a behaviour for a 
typical choice of parameters. When starting with any initial value distribution (e.g. a 
solitary one) in the parameter region 6 < -Ai, the solution tends to zero. Physically 
this behaviour is understandable, since we have a balance between driving (6) and 
damping (-/Ii). If the latter is too strong, the solution dies out. To prove (2.9) we first 
define the energy 

E :=- lr { ~ I Y  14 - 1 a x y 1 2  - Arlw12 + 6 ( w * 2  + w’> } dx . (2.10) 

Using the dynamic equation for y as well as the inequality (2.3) we obtain after some 
algebra for the time-variation of E 

(2.11) 

which can be simplified to 

(2.12) 
1 

dE dt [ L 
- < -24 No6 + -No4 - ArNi + 6 (1 + a,) N i  

Thus E is bounded when NO tends to zero for 6 < -Ai. We designate this bound by 
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1.6 

1.2 

-ai 
F~GURE 2. Existence diagram for the solutions (2.14)-(2.17) in the case 1, = +l. Note that below 

the line 6 = -Ai no solutions exist whereas the others only exist in the marked areas. 

E,. Going back to the definition of E ,  i.e. (2.10), and making use of the inequality 
(2.3), we immediately arrive at (2.9). 

2.2. Classes of stationary solutions 

Besides the constraint 6 > -Ai the localized solution (1.5) requires A, - 6 cos 2 9  > 0. 
For given li and 6 equation (1.6) determines (two solutions of) 9 (with index &). The 
extra condition Lr - 6 cos 243 > 0 originates from the localization condition (Iyl 0 
for 1x1 + 00). However, since we have a finite system, the solution (1.5) is only a 
special one. In general, we should look for solutions of 

; (:)2 + iG4  - (1, - 6 ~ 0 ~ 2 9 )  G2 = c , (2.13) 

where c is a constant of integration (c = 0 for localized solutions on the infinite 
domain). From here it becomes clear that 1, - 6 cos 2 9  > 0 is only necessary for 
decaying (at 1x1 .+ 00) solutions, but not for solutions on the finite domain. The 
noidal wave solutions can be found in a paper by Umeki (1991a). But note that 
for stationary solutions without compact support a shift in the resonance frequency 
has to be taken into account (Sasaki 1993; Miles 1994). Let us summarize here 
the existence diagrams of constant-phase solutions for Ar > 0 and Ar < 0 separately. 
(Without loss of generality we put [A,/ = 1.) 

Let us introduce the abbreviations 

s+ = f i r +  sech[q+(x - XO)] , { infinite domain } , (2.14) 

(2.15) 

(2.16) 
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FIGURE 3. Existence diagram for the solutions (2.14)-(2.17) in the case 1, = -1. Note that below 

the line 6 = -Ai no solutions exist whereas the others only exist in the marked areas. 

for q: = 1, - 6cos24p+ > 0 or q: = -1, + 6cos2q+ > 0, respectively. With 
finite periodicity length, the noidal solutions appear with modulus k ; k' follows from 
q,L, and k by a relation involving a complete elliptical integral K ( k ) .  However 
not all solutions (2.14)-(2.17) exist for all parameter values. Depending on the 
sign of 1, we have two different scenarios, depicted in figures 2 and 3, respectively. 

2.3. Stability diagram 
In the following we summarize the known stability results for the solitary wave 
G = s+. First, it was shown by Laedke & Spatschek (1991) as well as Barashenkov 
et al. (1991) that s- is always unstable. Furthermore, Laedke & Spatschek (1991) 
showed that s+ becomes unstable for 6 > (1: + 1;)1/2.  The stability of the soliton in 

the region -Ai < 6 < (1: + 1;) 1/2 is not easy to discuss. Laedke & Spatschek (1991) 
used a perturbative scheme to demonstrate that the soliton is stable just above the 
line 6 = -,Ii. On the other hand, Barashenkov et al. (1991) were able to demonstrate 
that below the curve 6 = (1: + 1f)'/2 in some region an oscillatory instability already 
exists. The by now quite complete understanding of the stability behaviour of the 
soliton solution s+ is summarized in figure 4. For 1, = +1 we have shown the stable 
region I of an existing stationary soliton solution. The instability from I -+ I11 was 
discussed by Laedke & Spatschek (1991), whereas the stabiltiy border I -, I1 was 
detected by Barashenkov et al. (1991). 

In 1991 Umeki discussed parts of the behaviour of solutions with periodic boundary 
conditions ( L  NN 15.5). He calculated constant-phase stationary states, which are zero, 
uniform, and noidal solutions denoted c+ and d+. Umeki also obtained a perturbative 
solution near the uniform state with non-constant phase. He found a good agreement 
of this perturbative state with numerically integrated solutions of the stationary 
system. 

The stability of the quiescent and uniform states was discussed by Umeki (1991), 
where it turned out that there are co-dimension-2 bifurcation points. At these points 
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FIGURE 4. Stability diagram for the soliton solution s+ in the case ,Ir = +l. Only in the completely 

blank region I does the soliton exist in a stable form. 

Umeki derived amplitude equations for perturbative mixed-mode stationary states of 
the form 

Y = ( p  + iq) = (PI + iql) cos(k1x) + (p2 + iq2) cos(k2x) (2.18) 
with k2 = mkl, m being positive integer. 

For the non-uniform stationary solutions the linear eigenvalue problem was solved 
numerically by expanding the perturbation into a Fourier series and truncating higher- 
order terms. This analysis showed that there are Hopf and pitchfork bifurcations 
in the bifurcation curves for both cn- and dn-type solutions. So far, the stability 
diagrams for noidal-wave-like solutions do not exist in forms similar to figure 4 for 
the soliton, but after the work of Umeki (1991 a) there is no doubt that they could be 
produced in full detail if it turns out that they are needed. However, when considering 
envelopes without compact support (Sasaki 1993; Miles 1994) a modification of (1.1) 
should be taken into account. In this paper we shall mainly concentrate on localized 
solutions in sufficiently large systems (of not too small depths) such that for the 
following conclusions the additional (to (1.1)) mass conserving term is not important. 

3. Nonlinear developments of the soliton instabilities 
Starting with a solitary wave solution in the stable regime I of figure 4, we can 

change parameters leaving the stability zone I. Various generic paths are possible. 
The first - quite trivial one - is to penetrate below the curve 6 = -Ai in the (6,-Ai)- 
parameter space. The result has already been discussed in 0 2.1; the space-dependent 
solutions die out because of too strong damping. The other paths will now be 
discussed in more detail, and most emphasis is on the I + I1 transition. 

3.1. The transition I --+ I I l  
Any numerical simulation starts with a finite system. Thus, when studying numerically 
the nonlinear development of an unstable solution s+ in region 111, we actually take c+ 
(with Dirichlet boundary conditions) or d+ (with von Neumann boundary conditions) 
for a large system ( L  -, 00). Actually, both the boundary conditions just mentioned 
are special forms of periodic boundary conditions. However, for the dynamics it 
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RGURE 5. Time development of an unstable soliton solution in the region 111 of figure 4. Here we 
have chosen 1, = l ,li  = -1, and 6 = 1.45. 

makes a big difference whether one investigates long or small systems, as we shall 
show below. It is interesting to follow the previously published (Laedke 8z Spatschek 
1991) linearly unstable mode into the nonlinear regime. A saturation of instability 
is shown in figure 5. The result reported there is typical, i.e. we always end up 
with c-noidal, d-noidal solutions, or a weak time-dependent mixture of both. Thus 
the transition I -+ I11 is a bifurcation in space without additional generic nonlinear 
behaviour in time. It is important to analyse such a behaviour in more mathematical 
detail; the analytical calculations will be presented in a separate paper. 

3.2. The transition I -+ II  
As has been noted already by Barashenkov et al. (1991), at the border line between 
regions I and I1 a Hopf bifurcation takes place, i.e. we have an oscillatory instability. 
By numerical computations we find that the new state, close to the onset of instability, 
is an oscillating soliton as depicted in figure 6. In the Appendix we present a theory 
for the nonlinearly saturated state. The Newell-Whitehead (1969) procedure is used 
there to derive for the amplitude A of the unstable mode a nonlinear equation of the 
form 

(3.1) 
As can be seen from the Appendix, t2 and x1 designate the weak time- and space- 
dependencies of the amplitude A, respectively. The coefficients a and y have been 
calculated numerically. One can show that (close to the onset of instability) the new 
state is stable, and the analytically calculated saturation amplitude agrees very well 
with the numerical simulations. Figure 7 depicts the maximum elongation Avmax 
above the stationary solitary wave amplitude as a function of the deviation from the 
onset of instability. There is a good agreement between our analytical predictions 
and the numerical simulation. 

However, further decreasing -Ai (e.g. for fixed 6) shows that the oscillating soliton 
becomes unstable, and a period-doubling route to temporal chaos appears. We 
can view this behaviour in various ways. Figure 8 shows plots of Imy(x = 0) us. 
Rey(x = 0) for different values of Ri (keeping 6 fixed). Figure 9 presents the 
corresponding Feigenbaum diagram. Using diagnostic techniques known from low- 

A,, = aA + PA,,,, + ylAI2A * 
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FIGURE 6. Space-time plot of an ‘oscillating soliton’ for lr = 1, li = -0.29, and 6 = 0.4. 

0.01 0.02 0.03 0.04 0.05 - 1  

A& 

FIGURE 7. Maximum oscillating amplitude Aymax (on top of the stationary amplitudes of the original 
soliton) in the vicinity of the marginal stable point li = -0.295, 6 = 0.36. Solid line from theory 
and dots from numerical simulation. We move into region I1 keeping 6 fixed. 

dimensional dynamical systems we can confirm that here a generic route to temporal 
chaos appears with spatially coherent nonlinear structures. 

Note that space-time plots of y(x,  t ) ,  e.g. Re y (x ,  t )  in figure 10 for the period-2 
and time-chaotic solutions do not exhibit big differences. The reason is that the same 
spatially coherent mode still mainly takes part in the nonlinear dynamics. 

However, when we deviate too much from the regime of marginal stability (i.e. 
the border between regions I and 11) it may happen that the time-dependent solitary 
structure ultimately disappears, and, instead, the trivial solution becomes an attractor. 
Note that in region I1 the trivial solution is stable as has been shown previously. 

At this stage three remarks are appropriate. First, cases of coherent modes in the 
chaotic dynamics of an infinite-dimensional system were first shown, although in a 
completely different context, by Nozaki & Bekki (1983), Yamada & Nozaki (1989), 
and Spatschek et al. (1990), Spatschek (1994). Secondly, Umeki (1991) reported, 
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FIGURE 8. Reduced phase-space portraits I m y  us. R e y  (we have chosen position x = 0, but the 
results are the same for any other x value) for 6 = 0.3 and (a) li = -0.222, ( b )  li = -0.217, (c) 
li = -0.214667, and ( d )  li = -0.213, respectively. 

for periodic boundary conditions on a short length, a quasi-periodic route to chaos. 
The difference, compared to the period-doubling route to chaos presented here for 
long systems, is quite typical as can be understood from the analysis of Grauer 
& Birnir (1992). Finally, attempts to mimic this analytical behaviour by a simple 
collective coordinates approach are not very satisfactory here since they are not in 
quantitative agreement with numerical predictions. However the accuracy of this 
statement depends on the effort to include the relevant modes. There is no doubt that 
correct inclusions of the radiation mode or a model based on the most important 
Karhunen-Loeve modes will increase the usefulness of low-dimensional descriptions 
(by ordinary differential equations), but this is beyond the scope of this paper. 

3.3. The paths ZZ + ZV and ZZZ -+ ZV 
We have seen that paths I + I11 lead to a bifurcation in space, whereas the transition 
I -+ I1 lead to a generic route in time. The two borderlines, as depicted in figure 4 
follow from the papers of Laedke & Spatschek (1991) and Barashenkov et al. (1991), 
respectively. However, as shown in figure 4, there is an overlapping region IV. First of 
all, when we start with a noidal wave solution of region I11 and move to IV period- 
doubling bifurcations can also be seen. These types of paths have been extensively 
investigated by Umeki (1991a). Therefore, there is no need to present them here 
again. We should mention that we have confirmed his simulations for relatively small 
distances L and obtained behaviour similar to the solitary case for larger systems. 

Here we would like to show only one typical example for relatively long distances 
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FIGURE 9. Sequence of period-doubling bifurcations for 6 = 0.3. 
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FIGURE 10. Spacetime plots of Rev for 6 = 0.3 and (a) li = -0.217 and 
(b)  ,Ii = -0.213, respectively. 

( L  = 40) which we computed by moving deep into the region IV. Time- and space- 
chaotic solutions can appear as is shown in figure 11. 

In contrast to the previous case, however, in IV the trivial solution is unstable so 
that it cannot appear as an attractor. 

4. Non-propagating soliton under a periodically modulated oscillation 
Recently the problem was considered of when the tank is subjected vertically to 

a periodically amplitude-modulated harmonic oscillation instead of a pure simple 
harmonic oscillation (Chen & Wei 1994). Such investigations are very interesting 
since they throw some light onto the importance of soliton modes in nonlinear 
dynamics of infinite-dimensional non-integrable systems (Spatschek 1994). In the 
present formulation it means that we allow for a, # 0. The basic experimental 
findings from a Plexiglas rectangular tank filled with water were reported by Chen & 
Wei (1994), who also presented numerical simulations and a simple theoretical model. 
Our numerical code can easily reproduce the numerical simulations; a typical picture 
of a modulated soliton is shown in figure 12. 

We would like to emphasize one point. The stable existence region of an un- 
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FIGURE 11. A space- and time-chaotic solution for Imy appears, e.g., at 
6 = 1.1652 and li = -0.1584. 
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FIGURE 12. Space-time plot of a non-propagating soliton under a periodically modulated 
oscillation. The parameter values are 6 = 0.75, li = -0.6, lr = +1, B = 2.6, and a, = 0.2. 

modulated soliton is shown in figure 4 as region I. By modulation a frequency s2 
appears which in general is incommensurable with the frequency 01 observed in the 
Hopf bifurcation I -+ 11. Thus in I1 we get a quasi-periodic solution in time as shown 
in figure 12. With respect to period 27c/s2 a period-doubling route to chaos can occur 
when we increase the modulated amplitude a,. (Note that this appears in addition 
to the period-doubling route to chaos along I + I1 for decreasing -Ai and a, = 0.) 
Thus the numerical situation is quite clear. 

However, when aiming for analytical low-dimensional reduced models one should 
be careful with quantitative predictions. The reason is that in the unperturbed (i.e. not 
modulated) state we should really start with a soliton in region I, and all the previous 
investigations (e.g. Nozaki & Bekki 1983) showed that the inclusion of the radiation 
mode is necessary for good quantitative agreement with experiments. It seems to us 
that the analytical model presented by Chen & Wei (1994) is useful for qualitative 
interpretations but for rigorous theoretical (quantitative) predictions the soliton mode 
is not sufficient in any perturbation theory. We have confirmed this suspicion by 
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finding clear quantitative discrepancies between the analytical predictions of Chen 8z 
Wei (1994) and the exact numerical solutions. But we believe that this quantitative 
aspect is not too important since one knows from other examples how to cure such 
a deficiency. 

5. Summary and outlook 
In this paper we wanted to contribute towards the general understanding of the 

nonlinear dynamics of non-propagating surface waves in Faraday resonance. We 
tried to embed our contributions into the recent literature in this field. New findings 
are the general non-existence theorem (0 2.1), the nonlinear theory for the oscillating 
instability (0 3.2 and the Appendix), and the prediction of a period-doubling route 
to chaos for long systems (0 3.2) in contrast to the quasi-periodic route for narrow 
systems (Umeki 1991a). Next we shall try to derive a nonlinear theory of the 
transition I + 111, i.e. the bifurcation in space. All our calculations are strictly valid 
only in the finite-but-small amplitude limit. The fascinating aspect is, however, the 
robustness of the localized states, which leads us to expect that the conclusions are 
even true beyond the small-amplitude limit. 

The analytical and numerical methods developed here have been worked out for 
applications in the Sonderforschungsbereich 191. The support of the Deutsche For- 
schungsgemeinschaft is gratefully acknowledged. Parts of this work belong to the 
thesis of one of the authors (H. F.). Discussions with members of the European 
project SC*-CT914705 are also gratefully acknowledged. 

Appendix. Ginzburg-Landau model at the transition I + I1 
Let us introduce the notation 

Y =(G+a+ib)eIP (A 1) 

where Gel" is the stationary solitary wave solution (G = s+). Introducing this ansatz 
into the dynamical equation for y ,  we obtain with 5 := -6cos(2cp) the coupled 
equations 

a, = -bxx - G2b + q2b - 25b - 2Gab - (a2 + b2)b, 

b, = axx + 3G2a - q2a + 21ib + G(3a2 + b2) + (a2 + b2)a, 

a, = Hb - 2Gab - (a2 + b2)b , 

br = -H-a + 21ib + G(3a2 + b2) + (a2 + b2)a, 

(A 2) 

(A 3) 

(A 4) 

(A 5) 

which can be also written in the form 

defining the generators H and H-. 
Without loss of generality we can write the perturbations in the form 

m 

a(x , t )  = c afl(x,t)eiflw' with a_, = a; , (A 6 )  
fl=-OJ 

W 

b(x, t )  = c bfl(x, t)eiflwt with b-n = b; . (A 7) 
n=-m 
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Let us discuss now the region close to the onset of instability at the borderline of 
regions I and 11. We have a marginal mode with (real) frequency 00. The amplitude 
of the first harmonic will be dominating, i.e. it will be of first order in the smallness 
parameter w. In addition, we shall have the nearest-neighbour harmonics, as well as 
a weak time-dependence of the amplitudes. This suggests the ansatz 

Uo(X ,  t )  = E2Q2(E2t, X ,  EX, E 2 X )  + C3U03 -k * ' * , 
bo(X, t )  = E2b02(E2t, X, E X ,  E 2 X )  -k E 3 b 0 3  -k * . * 

@(X, t )  = E2U22(C2t, X, EX, C2X) -k E3U23 -k ' ' ' , 
b 2 ( X ,  t )  = E 2 b 2 2 ( E 2 t ,  X, EX, E 2 X )  -k E 3 b 2 3  -k . . . 

(A 8) 
(A 9) 

(A 10) 
(A 11) 

(A 12) 

(A 13) 

for n = 0, 

for n = 2 and 

U l ( X ,  t )  = €A(E2t, EX, C 2 X ) h  E2U12 -k E3U13 -k * * . , 
b l ( X ,  t )  = E A ( E 2 t ,  E X ,  E 2 X ) 6  -k C 2 b 1 2  -k E 3 b 1 3  -k . . . 

for n = 1. 

modes after separating eimt, i.e. 
Here, E is the smallness parameter, and B and 6 are the amplitudes of the marginal 

A 

iwoB - Hob = 0 ,  (A 14) 

(A 15) H A  + (ioo - 2;li0)6 = o 
within a linear approximation. The definitions of the operators follow by comparing 
with the corresponding explicit equations, e.g. we also define 

Ho := H+ - 250, (A 16) 

Note that the index 0 always characterizes the quantities exactly at the marginal 
point. For the marginal mode we have 

TI (i ) = O .  

In the neigbourhood of a marginal point (0 and 1 i 0  we expand 

li = 1 i O  + E 2 4 2  + * * * , (A 19) 

5 = 5 0 + E 2 5 2 + - - *  , (A 20) 

(A211 

and use 

with w = coo. Next, we need the kernel of the adjoint operator 

2 
t 2  := f t , Xo := X , X 1  := CX , X2 := E2X 

for that we introduce 
H-a' 

-Hob' 
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Then 

= (:- ;o ) r; (;: ) 
= (:- ) [T, (; ) ] *  = o  

From here we conclude that (A23) leads directly to the kernel d and 6 of TI. 
Now we introduce the ansatzes into the basic equations and collect orders in E. 

The first order in E yields for n = 1 

AT1 (; ) = O .  

Order e2 and n = 0 follows from 

with the result 

Using 

we have 

For n = 1 and second order in e we obtain 

aA a -6 
T ) =2-- ( ) 

b12 ax, axo 
Since 

we can define 

such that 

can be solved. For n = 2 we have 

T ) = G (  -266 ) A 2 .  
b22 3G2 + 6 2  

(A 34) 



356 

Defining 

H .  Friedel, E .  W Laedke and K .  H .  Spatschek 

we finally obtain 

T2 can be inverted since H- and Ho are self-adjoint. 
Now the more complicated but most interesting order e3:  

+2A (;:/ ) + 2AG ( 

(A 37) 

Equation (A 38) requires a solvability condition. Multiplying from the left with the 
kernel of TI and integrating leads to 

(I=-((; ) 
+(G ) 
+(G ) 
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Now using the definitions 

we have derived a complex Ginzburg-Landau equation 
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